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Abstract
In this short paper, a correction is made to the recently proposed solution of Li and Talaga to a
1D biased diffusion model for linear DNA translocation, and a new analysis will be given to
their data. It was pointed out by us recently that this 1D linear translocation model is
equivalent to the one that was considered by Schrödinger for the Ehrenhaft–Millikan
measurements on electron charge. Here, we apply Schrödinger’s first-passage-time distribution
formula to the data set in Li and Talaga. It is found that Schrödinger’s formula can be used to
describe the time distribution of DNA translocation in solid-state nanopores. These fittings
yield two useful parameters: the drift velocity of DNA translocation and the diffusion constant
of DNA inside the nanopore. The results suggest two regimes of DNA translocation: (I) at low
voltages, there are clear deviations from Smoluchowski’s linear law of electrophoresis, which
we attribute to the entropic barrier effects; (II) at high voltages, the translocation velocity is a
linear function of the applied electric field. In regime II, the apparent diffusion constant
exhibits a quadratic dependence on the applied electric field, suggesting a mechanism of
Taylor-dispersion effect likely due the electro-osmotic flow field in the nanopore channel. This
analysis yields a dispersion-free diffusion constant value of 11.2 nm2 µs−1 for the segment of
DNA inside the nanopore, which is in quantitative agreement with the Stokes–Einstein theory.
The implication of Schrödinger’s formula for DNA sequencing is discussed.

(Some figures may appear in colour only in the online journal)

1. Introduction

Ever since the first demonstration of electric-field driven
linear ‘translocation’ (i.e. transport) of long nucleic acid
molecules through a nanopore [7], there have been intense
interests in searching for an analytical form for analyzing
the time distributions observed in a wide range of systems,
ssDNA [8] in α-hemolysin, dsDNA [9, 10] and proteins
[11, 12] in solid-state nanopores. Such analyses could provide
useful insights into the nature of DNA translocation dynamics
in nanopores. Ultimately the usefulness of a nanopore

technology will depend on the correct interpretation of the
translocation signals [13].

Even before the experimental observations of electric-
field driven DNA translocation, Sung and Park [14]
theoretically considered the DNA translocation driven by
a chemical potential gradient. They predicted that the
mean-first-passage-time should scale as a power law of
the DNA length due to the configurational entropy effects.
Subsequently, Lubensky and Nelson [15] proposed a 1D
biased diffusion model for DNA translocation in which the
DNA is modeled as a rigid rod and the configuration entropy
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of the DNA is ignored. They derived an analytical form for
the first-passage probability distribution function (FP-PDF),
which is the first-passage-time distribution function measured
in experiments, using absorbing boundary conditions on both
the cis and trans sides.

Most recently, a 1D biased diffusion model for DNA
translocation has been proposed [1] with only one absorbing
boundary on the trans side. Unfortunately a mathematical
error was made leading to the solutions for the Fokker–Planck
equation, compromising the validity of the FP-PDF formula,
as pointed out previously [2]. Here we summarize the key
points of [2] in a paper form and apply the correct form of
FP-PDF to the DNA translocation data in [1].

2. Models of DNA translocation: the first-passage
problem in 1D biased diffusion

In spite of the intense theoretical effort in the past decade,
many aspects of electric-field driven DNA translocation are
still not well understood. First, the DNA capture into the
pore is a process in which the DNA loses some of its
configurations. Sung and Park [14], Muthukumar [16], and
others have considered the effects of an entropic barrier
for DNA entry into the cis side of the pore. The entropic
barrier concept provides a good explanation for the observed
behavior in the increased capturing rate in experiments in
α-hemolysin [8] and solid-state nanopores [17]. Secondly, the
translocation times, the duration of a current blockage event,
have been found to exhibit a wide distribution.

The first attempt at constructing an analytical expression
for the distribution of the translocation times was proposed
by Lubensky and Nelson [15], motivated by the experiment
of Kasianowicz et al [7]. In the Lubensky–Nelson model,
the DNA translocation is modeled as a 1D biased random
walk, effectively treating the pore as a random walker
diffusing through the contour length of the DNA. In the
Lubensky–Nelson model, the fluctuations of the DNA tails
on the cis side and the heads in the trans side may
contribute to the effective diffusion constant and the drag
coefficient, they do not appear explicitly in the Fokker–Planck
equation. They then proceeded to solve the corresponding
Fokker–Planck equation with absorbing boundary conditions
at both cis and trans sides. They derived an explicit probability
density function (PDF) for the first-passage times. Later,
Berezhkovskii and Gopich [18] argued that the absorbing
boundary condition on the cis side in the Lubensky–Nelson
model as being unphysical, and they offered alternative
‘radiation’ boundary conditions with which they produced a
numerical solution to FP-PDF.

3. Schrödinger’s first-passage-time theory

Most recently, Li and Talaga [1] further simplified the 1D
biased diffusion model for DNA translocation by assuming
only one absorbing boundary condition for the trans side.
On the cis side, the probability density function P(x, t)
is only constrained by the initial condition P(x, 0) = δ(x).
Unfortunately a mathematical error was made in deriving the

FP-PDF. The first objective of this note is to correct this
error [1]. As pointed in [2] that the model proposed by Li
and Talaga (with one absorbing boundary condition) was in
fact mathematically equivalent to the one that was solved
by Schrödinger for the Ehrenhaft–Millikan experiments. We
show here that the Schrödinger’s FP-PDF can indeed be
used for analyzing DNA translocation time distribution. For
that matter, we find that the formula given by Lubensky
and Nelson, as well as by Li and Talaga, can give equally
good fittings to the translocation time distributions. However,
only Schrödinger’s FP-PDF allows us to extract a drift
velocity that is consistent with Smoluchowski’ law of linear
electrophoresis.

In typical DNA translocation experiment, the membrane
thickness is significantly shorter than the contour length L of
the DNA. Lubensky and Nelson argued that the translocation
process of the DNA going through the pore can be viewed,
equivalently, as the pore undergoing 1D biased Brownian
motion along the DNA. The distribution of the measured
translocation times should be that of the probability density
function of the first-passage times of 1D biased diffusion. In
this model, the probability density function (PDF) P(x, t) (per
unit length) of finding the pore on the position x on the DNA
can be obtained by solving the Fokker–Planck equation with
proper boundary conditions.

∂P(x, t)

∂t
= D

∂2P(x, t)

∂x2 − v
∂P(x, t)

∂x
(1)

where D and v are the diffusion constant and the drift velocity
of the segment of the DNA inside the pore, respectively.

The first step of solving a first-passage problem is to
solve the Fokker–Planck equation (1). For a differential
equation such as (1), it is clear that the solution is critically
dependent on the initial and boundary conditions. Here we
will not repeat the arguments of Lubensky–Nelson [15] and
Berezhkovskii–Gopich [18] for their choices of boundary
conditions. For simplicity, we adopt the same approach as that
of Li and Talaga [1] in assuming the initial condition of DNA
capture into the pore as:

P(x, 0) = δ(x) (2)

and the absorbing boundary once the DNA has completely
translocated into the trans side of the pore:

P(L, t) = 0. (3)

Physically, the absorbing boundary condition at x = L reflects
the physics that the translocated DNA cannot travel back into
the pore. By not imposing a boundary condition for P(x, t) at
x = 0 is equivalent to allowing the DNA to retract to the cis
side, which can indeed occur at least for DNA translocation in
solid-state nanopores. (In the case of Schrödinger’s work [3],
this condition allows the Brownian walker to move back
into the x < 0 part of the space. For the Ehrenhaft–Millikan
experiments, this is physically reasonable since x = 0 is
arbitrarily set in measurement window.)

A practical advantage of not imposing a boundary
condition at the cis side is that the problem becomes exactly
solvable. In fact, the problem becomes equivalent to the 1D
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biased diffusion model solved by Schrödinger. With these
conditions, the solution to the Fokker–Planck equation is as
follows:

P(x, t) =
1

√
4πDt

(e−(x−vt)2/4Dt
− Ae−(x−2L−vt)2/4Dt) (4)

where A = exp(vL/D). One can check that this probability
density function satisfies equation (1) and the initial
and boundary conditions (2) and (3). This solution was
first given [3] by Schrödinger in 1915 to describe the
Ehrenhaft–Millikan experiments [4, 5]. (In [1], to make P(x, t)
satisfy the boundary condition, A = 1 and a positive sign
for the vt term in the argument of the second exponential
were chosen. It is straightforward to show that such a form
for P(x, t) does not satisfy the Fokker–Planck equation in
equation (1).)

The first-passage probability density function (FP-PDF)
(per unit time) is defined [3] as

F1(t) = −
d
dt

∫ L

−∞

P(x, t)dx (5)

and it has the physical meaning of being the probability per
unit time for the random walker to pass the absorbing edge at
x = L, i.e. the DNA has fully translocated through the pore.
The result for F1(t) can be shown (see [19, 20]) to be:

F1(t) =
L

√
4πDt3

e−(L−vt)2/4Dt. (6)

By definition of a probability density function, F1(t) needs
to be normalized, i.e.

∫
∞

0 F1(t)dt = 1. One can show that
equation (6) is indeed normalized. (In contrast, the expression
given by Li and Talaga [1] for F1(t) contains an extra term of
vt in addition to L in the numerator, an error propagated from
the choice of parameters in equation (4). One can show that
this extra term will make F1(t) nonphysical since its integral
over time is equal to 2.)

By assuming only one absorbing condition at the trans
side, x = L, the solutions in P(x, t) in equation (4) and in
F1(t) in equation (5) contain the trajectories of the random
walker traveled to x < 0 side and come back to the region
0 < x < L. During DNA translocation, at low voltages, there
is finite possibility that the DNA can retract into the cis side
against the electric field. At low voltages, the entropic effects
are expected to play a role as the cost in free energy (loss of
configurational entropy) can exert a retracting force. For pure
1D random walk, the traveling back into the x < 0 space is
caused by thermal forces from the heat bath alone.

At high bias voltage, the DNA retraction after being
captured should be rare. Thus we expect the solution in
equation (6) to be of some guidance for data analysis in
DNA translocation experiments. In what follows, we will use
the Schrödinger FP-PDF in equation (6) to re-analyze the
DNA translocation data in solid-state nanopores previously
published in [1].

4. Re-analysis of translocation data in [1]

Figure 1 shows the translocation time distributions at four
selected voltages V = 20, 50, 80, and 110 mV provided by

Figure 1. Histogram of DNA translocation events from [1] and
fittings using equation (6).

Li [1]. The experimental details were discussed in [1]. Briefly,
the experiment was conducted on 4 kbp dsDNA in 1.6 M KCl
with 20% glycerol at pH = 7.5 in a nanopore (dia. ∼ 8 nm),
housed in a 20 nm thick freestanding silicon nitride (Si3N4)

membrane [1].
The red lines in figure 1 are best fits to equation (6).

Equation (6) offers excellent description for all of the
distribution data in [1]. However, we should point out that
equally good fittings can be achieved [21] using the formula
derived by Lubensky and Nelson [15] as well as the incorrect
FP-PDF formula from [1]. A more rigorous test will be
based on whether the fitting parameters make physical sense.
Indeed, the extracted parameters using the Lubensky–Nelson
do not show the expected dependence of drift velocity on
applied bias voltages [2].

The extracted values for drift velocity and diffusion
constant are shown in figure 2. In figure 2(A), one can clearly
identify two regimes of DNA translocations. In regime I,
at low voltages, the extracted drift velocity clearly deviates
from the expected Smoluchowski’s linear electrophoresis,
equation (7). In contrast, in regime II at high voltages, this
linear dependence is obeyed.

According to Smoluchowski [6], a charged object such as
DNA in salty buffer conditions will undergo drift under the
influence of applied electric field E. The drift velocity,

v = µE (7)

where µ is the electrophoretic mobility. Here E = V/d, d =
20 nm, the pore length. In Smoluchowski’s theory of
electrophoresis, the mobility is related to the surface (zeta)
potential of the charged particle ζ, µ = εζ/η, where ε is the
dielectric constant, η the viscosity of the medium.

The best fit to the regime II data in figure 2(A)
yields an apparent electrophoretic mobility value at µ =
1.95 nm2 µs−1 mV−1 (or nm µs−1 per mV nm−1), in
convenient units. This mobility value is about 10× smaller
than what is expected [22, 23]. In addition to the effects of
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Figure 2. (A) The extracted rift velocity versus applied voltage V .
(Note: we assume contour length L = 1040 nm which is the sum of
the contour length of 4 kbp DNA and 20 nm pore length.) The
straight line is a fit of the regime II data to Smoluchowski’s formula
(see text). (B) The extracted diffusion constant D versus applied
voltage V . The line is a fit of the regime II data to D = D0 + aV2

(see text) with D0 = 11.2 nm2 µs−1.

configurational entropy of the DNA which was attributed for
the weak length-dependence [10] of translocation velocity, the
electro-osmotic flow (EOF) vEOF = µwallE which runs in the
opposite direction of the electrophoresis, should also reduce
the apparent mobility. The apparent zeta potential ζ should be
the difference between those of the DNA and the negatively
charged surfaces of the pore, i.e. ζ = ζDNA − ζwall [24, 25].
The effect of the EOF field is also implicated in the measured
diffusion constant below.

As shown in figure 2(B), in the low-voltage regime I,
the voltage dependence of D is wildly erratic. In contrast, in
regime II of high voltages, there appears to be a well-defined
quadratic dependence on the applied voltage. We argue
below that the quadratic voltage dependence of measured
diffusion constant D can be understood as a consequence of
a Taylor-dispersion effect due to the EOF flow field.

Figure 3. A model for the effects of electro-osmotic flow (EOF)
profile on DNA translocation. The DNA and the surface of the
nanopore are negatively charged (not drawn). The expected EOF
velocity profile (not to scale) for the center cross-section of the
nanopore is shown by the red curve. The red arrow indicates the
EOF flow direction, the black arrows shows the direction of
translocation. Two positions of the DNA are shown relative to the
EOF field profile for which the DNA sees different background EOF
flow velocities.

In pressure-driven flow in long cylindrical pipes, Taylor
first showed [26, 27] that the combination of radial diffusion
and parabolic flow profile leads to a much enhanced effective
diffusion constant along the longitudinal direction. The
apparent longitudinal diffusion constant D is enhanced from
the intrinsic diffusion constant D0 by an amount δD =
r2v2

0/192D0 where r is the radius of the pipe, v0 is the flow
velocity at the center.

Here, in solid-state nanopores, the EOF flow field is
expected to be spatially inhomogeneous, zero on the wall
(no slip), maximum at distance ∼ Debye length (∼nm) away
from the wall. The EOF flow velocity profile should have a
minimum at the center since over pore length of 20 nm the
flow of positive counter ions cannot fully drag the rest of
the fluid. For such an EOF flow profile in figure 3, during
DNA translocation, the fluctuations in DNA’s radial position
lead to dispersions in the translocation velocity along the
longitudinal direction. This dispersion effect will broaden the
distribution of translocation time durations which in turn will
lead to an apparent diffusion constant much larger than the
intrinsic value. The change in D, δD, will be a quadratic
function of the maximum velocity vEOF in the channel, since
vEOF = εζwallE/η = (εζwall/ηd)V , thus δD ∼ r2v2

EOF/D0 ∼

V2, even though the numerical factor in the denominator will
be different.

Nevertheless, one concrete result from this analysis is that
by fitting the regime II data in figure 2(B) to D = D0 + aV2,
where a = r2(εζwall/ηd)2/D0 up to an unknown numerical
factor, one obtains D0 = 11.2 nm2 µs−1. To compare this
value with the Stokes–Einstein theory of diffusion, we model
the translocating section of DNA inside the pore as a rod
of length h, thus the intrinsic Stokes–Einstein diffusion
constant D0 = kBT/γ, γ = 2πηh/ ln(h/dDNA). By assuming
h = 10 nm (half of the pore thickness d = 20 nm), and
using η = 1.8 cP (at 20% glycerol), dsDNA diameter dDNA =

2.2 nm,T = 300 K, we obtain D0 = 11.7 nm2 µs−1,
in excellent agreement with the experimental value. The
assumption here that the effective diffusing segment has a
length of half the length of the pore is reasonable due to the
hourglass shape of the inner part of the nanopores [28].
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5. Implications for nanopore DNA sequencing

With the finding of an analytical form equation (6) for the
translocation times, which is at least of partial utilities at
high voltages, one might ask what is the implication of
equation (6) for determining spatial features (such as using
hybridization probes [13] for sequencing DNA) on a DNA or
other biological molecules.

Firstly, equation (6) means that the mean-first-passage-
time is simply:

〈τ 〉 =

∫
∞

0
tF1(t)dt =

L

v
. (8)

In terms of spatial resolving power for using the nanopore
technique, one needs to consider the mean-squared-first-
passage time 〈τ 2

〉 (the second moment) which is:

〈τ 2
〉 =

∫
∞

0
t2F1(t)dt =

(
L

v

)2

+
2DL

v3 . (9)

Since a change in position will lead to a change in
mean-first-passage-time by an amount δ〈τ 〉 = δL/v, the
necessary condition for resolving a spatial feature δL away
from position x = L would be

δ〈τ 〉 ≥

√
〈τ 2〉 − 〈τ 〉2 (10)

or δL/v ≥ (2DL/v3)1/2. Equivalently, this condition becomes

δL ≥

√
2D

L

v
. (11)

Physically, equation (11) merely states that during the time
of transit, L/v, for the nanopore to travel (in the reference
frame of the DNA contour) from x = 0 to L, the length scale
of thermal smearing (2DL/v)1/2 needs to be smaller than δL.
Otherwise, this feature cannot be resolved. This condition is
similar in principle to that in gel electrophoresis [29]. In the
latter technique [29], when placed in an applied electric field
inside a gel matrix, DNA fragments of different lengths have
slightly different electrophoretic velocities, by an amount δv
(in gel matrix, the DNA electrophoretic mobility becomes
length dependent). With increasing time, the separation
between two bands grows as δvt. At the same time, the spread
of each band grows as (2Dt)1/2. The two bands become
distinguishable when δvt ≥ (2Dt)1/2. Thus at the fundamental
level, the nanopore technique and gel electrophoresis share the
same set of basic physical principles.

6. Summary

We have re-examined the feasibility of using the first-passage-
time distribution based on a 1D biased diffusion model to
analyze DNA translocation data in nanopores in [1]. We
showed that Schrödinger’s first-passage probability density
function gives an excellent description of DNA translocation
time distribution in solid-state nanopores. At high voltages,
we find that the extracted voltage dependence of the drift
velocity is in excellent agreement with Smoluchowski’s law

of linear electrophoresis. Significant deviation, however, is
observed at low voltages and is attributed to entropic barrier
effects which undermine the validity of the model. At high
voltages, the extracted diffusion constant is a quadratic
function of applied voltage. We argue that such a behavior
arises from the dispersive effect of electro-osmotic flow
field inside the pore for the DNA translocation process.
By assuming a Taylor-like dispersion form for the effective
diffusion constant, we determine the intrinsic diffusion
constant D0 to be 11.2 nm2 µs−1, a value in quantitative
agreement with the prediction of Stokes–Einstein theory of
diffusion. Finally, we urge the authors in [11, 12] to carry out
a re-analysis of their data using the correct FP-PDF formula
here, as they used the incorrect formula from [1] as well.
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